Provides the Christoffel symbols of the first kind \(\Gamma_{ijk}\) with respect to the Levi Civita connection for a given metric tensor.
Arguments
- g
A covariant metric tensor, a "metric_field" object. See
metric_field()
to create a new metric tensor, or use predefined metrics, e.g.g_eucl_cart()
.
Value
Returns the Christoffel symbols of the first kind \(\Gamma_{ijk}\)
as rank 3 array()
.
See also
Wikipedia: Christoffel symbols
Examples
christoffel(g_eucl_sph(3))
#> , , 1
#>
#> [,1] [,2] [,3]
#> [1,] "0" "0" "0"
#> [2,] "0" "((2 * r)) / 2" "0"
#> [3,] "0" "0" "((2 * r * sin(ph1)^2)) / 2"
#>
#> , , 2
#>
#> [,1] [,2]
#> [1,] "0" "( - (2 * r)) / 2"
#> [2,] "((2 * r)) / 2" "0"
#> [3,] "0" "0"
#> [,3]
#> [1,] "0"
#> [2,] "0"
#> [3,] "((r^2 * (2 * (cos(ph1) * sin(ph1))))) / 2"
#>
#> , , 3
#>
#> [,1] [,2]
#> [1,] "0" "0"
#> [2,] "0" "0"
#> [3,] "((2 * r * sin(ph1)^2)) / 2" "((r^2 * (2 * (cos(ph1) * sin(ph1))))) / 2"
#> [,3]
#> [1,] "( - (2 * r * sin(ph1)^2)) / 2"
#> [2,] "( - (r^2 * (2 * (cos(ph1) * sin(ph1))))) / 2"
#> [3,] "0"
#>