g_mink_cart()
provides the covariant metric tensor in n
dimensions in
Cartesian coordinates with signature \((-1, 1, 1, ...)\).
$$ds^2=-dx_0^2+\sum_{i=1}^{n-1} dx_i^2$$
g_mink_sph()
provides the same tensor where the spatial part uses spherical
coordinates.
$$ds^2=-dt^2 + dr^2 + r^2 d\Omega^2$$
See also
Wikipedia Minkowski metric tensor
Other metric tensors:
g_eucl_cart()
,
g_sph()
,
g_ss()
,
metric_field()
Examples
g_mink_cart(4)
#> <Covariant metric tensor field> (x0, x1, x2, x3)
#> [,1] [,2] [,3] [,4]
#> [1,] -1 0 0 0
#> [2,] 0 1 0 0
#> [3,] 0 0 1 0
#> [4,] 0 0 0 1
g_mink_cart(4) %_% .(+i, +j)
#> <Labeled Array> [4x4] .(+i, +j)
#> [,1] [,2] [,3] [,4]
#> [1,] -1 0 0 0
#> [2,] 0 1 0 0
#> [3,] 0 0 1 0
#> [4,] 0 0 0 1
g_mink_sph(4)
#> <Covariant metric tensor field> (t, r, ph1, ph2)
#> [,1] [,2] [,3] [,4]
#> [1,] "-1" "0" "0" "0"
#> [2,] "0" "1" "0" "0"
#> [3,] "0" "0" "r^2*1" "0"
#> [4,] "0" "0" "0" "r^2*sin(ph1)^2"
g_mink_sph(4) %_% .(+i, +j)
#> <Labeled Array> [4x4] .(+i, +j)
#> [,1] [,2] [,3] [,4]
#> [1,] "-1" "0" "0" "0"
#> [2,] "0" "1" "0" "0"
#> [3,] "0" "0" "(1) / (r^2*1)" "0"
#> [4,] "0" "0" "0" "(1) / (r^2*sin(ph1)^2)"