Given two or more scalograms with identical sampling frequencies, frequency scales and sigma, it can be useful to combine several into a single object creating a longer time series. The function errs if these conditions are not satisfied.
Usage
# S3 method for class 'fcwtr_scalogram'
rbind(...)Arguments
- ...
One or more "fcwtr_scalogram" objects, generated by
fcwt().
Details
The scalograms are stitched together in chronological fashion (i.e. the first argument will the initial piece, etc.). Time offset information is kept from the first piece.
Examples
ts_sin_440 <- sin((1:5000) * 2 * pi * 440 / 44100)
res <-
fcwt(
ts_sin_440,
x_sample_freq = u(44.1, "kHz"),
freq_begin = u(50, "Hz"),
freq_end = u(1000, "Hz"),
n_freqs = 10,
sigma = 5
)
print(res)
#> _Scalogram_
#> * (Time/Frequency) dimension: ( 18 , 10 )
#> * Sampling rate: 150 [Hz]
#> * Frequency scale: 50 [Hz] - 1000 [Hz], log
#> * Time offset: 0 [s]
#> * Sigma: 5
#> o Time resolution at 50 [Hz] : 0.4 [1/Hz]
#> o Time resolution at 1000 [Hz] : 0.02 [1/Hz]
#> o Relative frequency resolution: 0.127324
#> * Time/frequency matrix summary
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> 0.00000 0.00000 0.00000 0.00001 0.00001 0.00023 114
# doubled scalogram
res_doubled <- rbind(res, res)
print(res_doubled)
#> _Scalogram_
#> * (Time/Frequency) dimension: ( 36 , 10 )
#> * Sampling rate: 150 [Hz]
#> * Frequency scale: 50 [Hz] - 1000 [Hz], log
#> * Time offset: 0 [s]
#> * Sigma: 5
#> o Time resolution at 50 [Hz] : 0.4 [1/Hz]
#> o Time resolution at 1000 [Hz] : 0.02 [1/Hz]
#> o Relative frequency resolution: 0.127324
#> * Time/frequency matrix summary
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> 0.00000 0.00000 0.00000 0.00001 0.00001 0.00023 228