Provides the metric tensor of the sphere \(S^n\) with radius 1.
g_sph()
returns a symbolic tensor field in generalized spherical
coordinates \({\phi_1, \phi_2, ..., \phi_{n-1}}\).
$$d\Omega^2= d\phi_1^2 + \sum_{i=1}^{n-1} \prod_{m=1}^{i-1} sin(\phi_m)^2 d\phi_i^2$$
Usage
g_sph(n, coords = paste0("ph", 1:n))
Details
As usual, spherical coordinates are degenerate at \(\phi_l = 0\), so be careful around those points.
See also
Wikipedia: Sphere
Other metric tensors:
g_eucl_cart()
,
g_mink_cart()
,
g_ss()
,
metric_field()
Examples
g_sph(3)
#> <Covariant metric tensor field> (ph1, ph2, ph3)
#> [,1] [,2] [,3]
#> [1,] "1" "0" "0"
#> [2,] "0" "sin(ph1)^2" "0"
#> [3,] "0" "0" "(sin(ph1)^2) * (sin(ph2)^2)"
g_sph(3) %_% .(+i, +j)
#> <Labeled Array> [3x3] .(+i, +j)
#> [,1] [,2] [,3]
#> [1,] "1" "0" "0"
#> [2,] "0" "(1) / (sin(ph1)^2)" "0"
#> [3,] "0" "0" "(1) / ((sin(ph1)^2) * (sin(ph2)^2))"