Provides the metric tensor of the Einstein equation's Schwarzschild solution in Schwarzschild coordinates where the Schwarzschild radius \(r_s\) is set to 1. $$ds^2 = - \left(1-\frac{r_s}{r}\right) dt^2 + \left(1-\frac{r_s}{r}\right)^{-1} dr^r + r^2 d\Omega^2$$
Details
Note that Schwarzschild coordinates become singular at the Schwarzschild radius (event horizon) \(r=r_s=1\) and at \(r=0\).
See also
Wikipedia: Schwarzschild metric
Other metric tensors:
g_eucl_cart()
,
g_mink_cart()
,
g_sph()
,
metric_field()
Examples
g_ss(4)
#> <Covariant metric tensor field> (t, r, ph1, ph2)
#> [,1] [,2] [,3] [,4]
#> [1,] "-(1-1/r)" "0" "0" "0"
#> [2,] "0" "1/(1-1/r)" "0" "0"
#> [3,] "0" "0" "r^2*1" "0"
#> [4,] "0" "0" "0" "r^2*sin(ph1)^2"
g_ss(4) %_% .(+i, +j)
#> <Labeled Array> [4x4] .(+i, +j)
#> [,1] [,2] [,3]
#> [1,] "(1) / (-(1-1/r))" "0" "0"
#> [2,] "0" "(1) / (1/(1-1/r))" "0"
#> [3,] "0" "0" "(1) / (r^2*1)"
#> [4,] "0" "0" "0"
#> [,4]
#> [1,] "0"
#> [2,] "0"
#> [3,] "0"
#> [4,] "(1) / (r^2*sin(ph1)^2)"